
Service QA and Dataverse
Speaker:
Samuel Bernardo (LIP) on behalf of EOSC-Synergy

Collaborators:
Jorge Gomes (LIP), João Pina (LIP), Mário David (LIP), Ricardo Martins (LNEC), 
Alberto Azevedo (LNEC), Vyacheslav Tykhonov (DANS-KNAW), Pablo Orviz 
(CSIC), Isabel Campos (CSIC), Germán Moltó (UPV) and Miguel Caballer (UPV)

EOSC-SYNERGY receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 857647



Outline

• The SQA process in EOSC-Synergy
• Worsica use case

www.eosc-synergy.eu - RIA 857647 1



Consortium

www.eosc-synergy.eu 2



The Quality Baselines
SQA process in EOSC-Synergy

www.eosc-synergy.eu - RIA 857647 3

• SQA baseline doc is v3.2:
• https://github.com/indigo-dc/sqa-baseline
• https://indigo-dc.github.io/sqa-baseline/manuscript.pdf

• doc in github
• treated as code
• discussions in “issues”
• changes with PRs
• autobuild:

• when tag new release and pushed to “master”

• The criteria is design towards automation 
(DevOps) and we want to translate this into 
an SQAaaS.

http://hdl.handle.net/10261/160086

We accept contributions

Open

https://github.com/indigo-dc/sqa-baseline
https://indigo-dc.github.io/sqa-baseline/manuscript.pdf
http://hdl.handle.net/10261/160086


www.eosc-synergy.eu - RIA 857647 4

• Service-QA baseline doc is v1.0:
• https://github.com/EOSC-synergy/service-qa-baseline
• https://eosc-synergy.github.io/service-qa-

baseline/manuscript.pdf
• doc in github
• treated as code
• discussions in “issues”
• changes with PRs
• autobuild:

• when tag new release and pushed to “master”

• The criteria is design towards automation and 
we want to translate this into an SQAaaS.

https://digital.csic.es/handle/10261/214441

We accept contributions

Open

The Quality Baselines
SQA process in EOSC-Synergy

https://github.com/EOSC-synergy/service-qa-baseline
https://eosc-synergy.github.io/service-qa-baseline/manuscript.pdf


www.eosc-synergy.eu - RIA 857647 5

Software quality: Jenkins pipelines
● Verify criteria
● Produce artefacts
● Issue badges

Service quality: extending Jenkins pipelines
● Step beyond software quality
● Automated deployment
● Issue badges

Implementation of Quality Baselines
SQA process in EOSC-Synergy



www.eosc-synergy.eu - RIA 857647 6

• On-demand quality assessment for: Service software repositories and Service Instance
• Making use of: Quality criteria and Verification mechanisms
• Requires: User interface and further automation

6

Software
Quality
Validation

ArtifactsSoftware
Repository

Service
Deployment

Service
Instance
Validation

Software Quality as a Service (SQAaaS)
SQA process in EOSC-Synergy



www.eosc-synergy.eu - RIA 857647 7
7

Two main outcomes:

1. The Online Quality Assessment checks compliance of a 
uniquely identified version of the source code with regards 
to the quality baselines:
a. Provide a comprehensive report (per-requirement 

analysis)
b. Quality badges will be issued to recognize the 

achievements 
2. The Pipeline as a Service compose Jenkins pipelines 

according to the set of software quality criteria selected by 
the user:
a. Provides a library, coined jenkins-pipeline-library, to be 

used by the Jenkinsfiles

Software Quality as a Service 
SQA process in EOSC-Synergy

https://github.com/indigo-dc/jenkins-pipeline-library


www.eosc-synergy.eu - RIA 857647 8

A proper recognition for software & services:

• Compliant with the quality levels defined in (EOSC)
• Issuing digital badges such that

• can be Automatically verified,
• Cannot be tampered,
• Represent the achievement made by software developers and

service integrators.
• Increases users trust in the software and services quality and

maintenance promoting adoption

It is about Quality recognition and trust:

→ Engaging software developers in EOSC ecosystem

Digital badges: why creating?
SQA process in EOSC-Synergy



Outline

• The SQA process in EOSC-Synergy
• Worsica use case

www.eosc-synergy.eu - RIA 857647 9



Worsica use case

Worsica provides access to customized remote sensing services 
based on Copernicus data.

Current services
• Coastline water-land interface
• Inland water detection
• Water leak detections on irrigation networks

10



Worsica use case

The developed main services in WORSICA are:
• Web portal platform
• Processing engine

Programming language: python
Additional required open source services:
• Celery (task queue)
• Postgis (database)
• RabbitMQ (message broker)

11



Service QA Integration

Questions arises:
• Test the service
• Deliver software in an unknown environment
• Data FAIRness complaint

Service QA answer:
• Tox automation tool as a build helper to run the required 

tests
• Review service software and create docker images to 

automate the deployment
• Keep data outside service in Dataverse repository, with 

regular database snapshots, assuring FAIR principles 12



Service QA Integration

SQAaaS with Jenkins automation server:
• Require docker compose to deploy the service and their 

dependent services (multiple docker images)
• Automated code fetching from github repositories, selecting 

the branch or tag as required
• Define the test environments in tox for style check, unit test, 

coverage and security
• Pipeline have already defined the stages and will import for 

each one the required environment from tox file in expected 
docker container

13



Dataverse Repository

14 14

Initial service architecture:
• Data missing global unique 

identifier
• Data stored in multiple places 

internal to the services and not 
accessible

• Inexistent metadata detailed 
provenance association

• Data access not following 
vocabularies that apply FAIR 
principles



Dataverse Repository

15 15

FAIR service architecture:
• Dataverse provides the repository solution that 

complies with the FAIR principles
• Define a dataverse and associate a persistent 

identifier namespace
• Associate metadata with the provided and produced 

data
• Use Data Commons to allow data sharing between all 

teams and projects
• Metadata is by default associated with CC0 Creative 

Commons license and publicly accessible



Dataverse Repository

16 16

Integrate code with Dataverse REST API:
• Very useful to implement in any language only being 

dependent with the provided interface without any 
library requirements

• Easy to maintain Worsica code in parallel with 
Dataverse service updates

• Current Dataverse REST API is very complete and 
allows to run all necessary operations

• Share sensitive data with confidence using DataTags 
System, that allows to use a set of security features 
and access requirements for file handling



Final remarks

17 17

Dataverse pros:
• provides a FAIR repository with a thorough REST interface
• open source software with Apache License v2.0
• allows to manage public and private data
• commons sharing along teams / projects

Dataverse cons:
• software integration for data management using Dataverse couldn’t 

be as quick as expected because of required learning curve
• an account and associated namespace must be acquired for a fee 

from a DOI or HDL provider for persistent identifiers be citable



Thank you
For further information: 

communications@eosc-synergy.eu

www.eosc-synergy.eu

www.eosc-synergy.eu - RIA 857647 18


